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Abstract:  

Experiments have implicated dopamine in model-based reinforcement learning (RL).  These findings 

are unexpected as dopamine is thought to encode a reward prediction error (RPE), which is the key 

teaching signal in model-free RL.  Here we examine two possible accounts for dopamine’s involvement 

in model-based RL: the first that dopamine neurons carry a prediction error used to update a type of 

predictive state representation called a successor representation, the second that two well 

established aspects of dopaminergic activity, RPEs and surprise signals, can together explain 

dopamine’s involvement in model-based RL.  

Introduction 

The reward prediction error theory of dopamine proposes that dopamine neurons signal the 

difference between how good the future was expected to be, and how good it turned out to be, taking 

into account both immediate and anticipated long-run rewards1,2.  As a normative theory that explains 

a diverse range of experimental data, the influence of RPE theory is hard to overstate. However, an 

increasing body of findings suggest that RPE is only be a partial account of what dopamine is doing.  

Signals carried by dopamine neurons appear more heterogeneous than predicted by the theory 3–6, 

including responses shaped by movement7–11, and to aversive or threatening stimuli12,3,13.  A second 

set of unexpected findings concerns dopamine’s involvement in model-based reinforcement 

learning14–23 (RL).   

Model-based RL uses an internal model of the world that predicts future states given chosen actions, 

and evaluates the long run value of different options by simulating their likely consequences2.  This 

contrasts with model-free reinforcement learning, which stores estimates of the long run value of 

states and actions, and updates these directly from experience using RPEs.  These distinct algorithms 

have different strengths. Model-based RL uses information efficiently, but is slow and computationally 

expensive, as it must simulate many possible futures.  Model-free RL is quick and computationally 

cheap, at the cost of less flexible decision making when the environment changes.  Brains are thought 

to use both methods in parallel to exploit the strengths of each24–26. 
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As RPE is the key teaching signal in model-free reinforcement learning, RPE dopamine theory was 

initially conceived with respect to model-free RL.  However, several lines of evidence implicate 

dopamine in model-based RL.  First, dopaminergic RPEs do not simply reflect model-free cached values 

of directly observable events, but rather are informed by inferences based on rich models of the 

environment27,14,15,20,22,28.  This is still compatible with an RPE account of dopamine function, but 

expands the sources of value information that inform RPEs.   More troubling for RPE theory is that 

dopamine neurons respond to events that are surprising but not directly rewarding or aversive, i.e. 

sensory or state prediction errors (SPEs)29–32,23,33.  This is fundamentally at odds with RPE theory, 

because RPEs only occur when outcomes are better or worse than expected.  Arguably most strikingly, 

both causal manipulations16,18,21,34 and natural variation17,19 in dopamine function affect model-based 

learning and decision making.  For a detailed review of these findings see Langdon et al 35.  

Thus, while there is compelling evidence implicating dopamine in model-based RL, its precise role 

remains unclear.  Here we examine an intriguing recent proposal36 that dopamine encodes a type of 

SPE used to learn a predictive state representation called the successor representation (SR).  We 

suggest that some aspects of dopamine anatomy and physiology are hard to reconcile with this 

account, and propose instead that dopamine’s involvement in model-based RL can be explained 

through two well established aspects of dopamine activity; RPEs and surprise signals.  

Dopamine as successor representation prediction error 

The basic idea of the successor representation is to learn the long-range predictive relationships 

between states – i.e. which states generally follow after which other states37–39.  Specifically, the SR 

for state X is a vector whose elements indicate the expected discounted future occupancy for each 

state after starting in state X.  This separates the problem of predicting long run value into two 

components: the expected future states given current state – summarized by the SR – and the 

immediate rewards available in each state.  Long run values can be computed by multiplying the SR 

with the immediate reward available in each state.  This allows value estimates to be updated quickly 

and simply if the immediate reward available in each state changes (for example due to a change in 

motivational state or current goal), subject to some important limitations due in part to the 

dependence of the SR on the specific policy followed while it was being learnt38.  The SR has attracted 

substantial recent interest in neuroscience, both as a mechanism for goal-directed behaviour38,40, and 

to account for response properties of neurons41.  

As the number of possible discrete states of the world is infinite, practical application of the SR 

requires working with state features36,42.  These could be low-level sensory features like colours or 

high-level abstract features like ‘at work’.  A feature-based SR is a matrix, mapping the set of features 
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describing the current state of the world onto those features that are likely to be observed in the 

future.  This can be learned using temporal difference methods, based on updating estimates when 

observations differ from expectations, very similar to those used in model-free RL to learn values.  The 

key difference is that rather than updating a scalar value estimate using a scaler RPE, the SR for a given 

state feature is a vector indicating how strongly it predicts the future occurrence of each feature 

(Figure 1A,B).  As the prediction is a vector rather than a scalar, the prediction error is also a vector.   

The SR account of dopamine activity proposes that dopamine encodes the vector valued SPE used to 

update a feature-based SR36.  This accounts for several observations not straightforwardly predicted 

by RPE theory.  Firstly, it predicts heterogeneity of dopamine neuron responses, as different dopamine 

neurons encode prediction errors for different state features.  Secondly, it accounts for dopamine 

neuron responses to surprising events that are neither appetitive or aversive, as these can still cause 

SPEs.  Thirdly, it predicts that dopamine activity is necessary for learning stimulus-stimulus 

relationships.  Finally, it is argued to explain the ability of dopamine neuron stimulation to drive 

learning about stimulus-stimulus relationships in situations where it would not normally occur21,36.  

We will return to this last claim later. 

Despite these strengths, there are some complications with the SR account of dopamine.  The first is 

dimensionality.  The prediction error used to update the SR has the same the dimensionality as the SR 

itself, i.e. the number of state features.  Computational accounts of basal ganglia typically assume that 

the cortical input represents state, while prediction errors are carried by dopamine neurons.  The rat 

brain contains approximately 17 million cortico-striatal projection neurons43, but only around 70 

thousand midbrain dopamine neurons44.  Given this vast disparity in neuron numbers, it seems 

inconceivable that the dimensionality of the dopamine signal is the same as that of the cortical state 

representation.  Furthermore, each dopamine neuron densely innervates a substantial volume of 

striatum45, and dopamine neurons communicate predominantly via volume transmission46,47, further 

reducing the dimensionality of the dopamine signal received by post synaptic neurons.  This massive 

dimensionality mismatch is not a problem for RPE theory, as the RPE is scalar.  It is for an SR account.   
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Figure 1.  Neuron numbers, signal dimension, and algorithm.  A)  Number of cortico-striatal, striatal and 
midbrain dopamine neurons in the rat brain, estimates from 43,44,48.  The disparity in neuron numbers strongly 
suggests that the signal carried by dopamine is much lower dimensional than the cortical input to striatum.  
B) Diagram illustrating temporal difference (TD) value learning using linear function approximation.  A vector 

𝐬t of state features active at time t, is multiplied by a weight vector 𝛉t to give a vector 𝐯t, whose elements 

are the contributions made by each state feature to the scalar value vt of the state.  The scalar reward 
prediction error δt, used to update the weights, is computed as δt = rt + γvt − vt−1 , where rt is the 
immediate reward at time t, γ is a discount rate and vt−1 the value at the previous time step.  Irrespective of 
the dimension of the state representation, the prediction error is a scalar, hence if 𝐬t is represented by cortical 

neurons, 𝛉tby their synapses in striatum, and δt by dopamine, the algorithm is consistent with much 

smaller signal dimension for dopamine relative to cortical input.  C) Temporal difference learning of a feature 

based successor representation (SR).  The state vector 𝐬t is multiplied by a weight matrix 𝚯t to give a matrix 

𝑴t, whose elements 𝑚𝑡
𝑖,𝑗

 are the contributions made by feature 𝑖 of the current state to predictions about 
the future occurrence of feature 𝑗.   Summing the contribution of all features of the current state gives the 
vector 𝒎t, the SR for the current state.  As the SR is a prediction of future state features, rather than rewards 
as in TD value learning, the feature vector 𝐬t takes the role played by reward rt in value learning.   As the 
prediction is a vector of dimension given by the number of state features, so is the prediction error 𝛅t.  This 
algorithm does not appear consistent with the massive difference in signal dimension between cortical and 
dopaminergic input to striatum.  D) The one dimensional prediction error signal in standard TD value learning 
is inconsistent with the observed heterogeneity of dopaminergic responses.  One possible explanation is that 
parallel cortico-basal-ganglia loops (labelled 1 & 2) independently learn value estimates, each using only a 
subset of state features.  For clarity we have shown the extreme case of no crosstalk between loops.  E) Recent 
data suggest that rather than predicting scalar reward, the basal ganglia predict multiple axes of 
reinforcement (reward and threat) in loops involving different striatal regions (nucleus accumbens and tail of 
striatum). Here we have shown two loops which use partially overlapping sets of state features to predict 
different components of a multi-dimensional reinforcement vector 𝐫t.   

 



 5 

Could the dimensionality mismatch be avoided if only a subset of the cortico-striatal input participates 

in the SR computation?  This does not appear to align with the anatomy, as both the cortical and 

dopaminergic innervation are distributed across the whole striatum.  Nor are dimensionality 

considerations invalidated by emerging evidence for a degree of heterogeneity across dopamine 

neurons3–6, or that they carry some information about surprising reward flavours33 (albeit with weak 

selectivity) – as the argument is not that the dopamine signal is one dimensional, only that it is much 

lower dimensional than the cortical input representing state.   Accurately estimating the 

dimensionality of activity is challenging, both because it requires large recorded populations, and 

because the dimensionality of task related activity is constrained by that of the behavioural task 

used49,50.   However, while we lack precise quantitative estimates of the dimensionality of cortical and 

dopaminergic input to striatum, the neuron number and other considerations outlined above suggest 

the disparity is large.  This constrains the algorithm that the circuit may be implementing. 

A second issue is that an SR account does not straightforwardly predict the diverse array of 

experimental data consistent with RPE theory, including experiments where a large fraction of 

dopamine neurons qualitatively and quantitatively behaved like an RPE1,51–54 or that dopamine neuron 

stimulation can be strongly reinforcing55–59.   Gardner et al. suggest a resolution to this is to treat 

reward as just another salient stimulus dimension, such that a subset of dopamine neurons encode a 

reward prediction error as part of a broader SPE.  But the point of the SR is to separate the problem 

of long run value prediction into one component that learns long run predictions about future states 

(the SR) and a distinct component that learns about the immediate reward available in those states.  

This necessitates that reward enters into SR based algorithms in a fundamentally different way from 

state features.  Therefore, while RPE-consistent data can be shoehorned into an SR account this way, 

RPE signals are not predicted by SR theory on normative grounds. 

A final issue concerns the proposal that the SR account explains elegant data demonstrating that 

optogenetic stimulation of dopamine neurons can unblock learning of stimulus-stimulus 

relationships21.  In these experiments, rats received presentations of an audio-visual compound 

stimulus ‘AC’ that predicted the subsequent presentation of a different auditory stimulus ‘X’ (denoted 

as AC→X).  If the rats had previously learnt that visual stimulus A alone predicted X (A→X), this blocked 

learning of the C→X association during subsequent presentation of the compound AC→X.  However, 

if during presentations of AC→X, dopamine neurons were optogenetically activated at the onset of X, 

learning about C→X occurred.  Under an SR account, this could be caused by dopamine stimulation 

acting as an additional SPE driving learning36.  The problem with this is the specificity of learning.  In 

order for dopamine stimulation at the time of X presentation to selectively promote learning C→X, 

the dopamine neurons recruited must be specifically those that represent errors in the prediction of 
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X.  One might argue that these neurons had sub-threshold excitation from the presentation of X itself, 

and stimulation turned this into super-threshold spiking.  However, this seems unlikely as the robust 

stimulation parameters employed in the experiment would be expected to recruit a large population 

of dopamine neurons irrespective of any other excitatory input. 

Therefore, despite the elegance of the SR account, we think these issues reduce its plausibility, leading 

us to consider other potential ways that dopamine may interact with model-based RL. 

Well informed RPE + surprise = model-based dopamine? 

In addition to reward prediction errors, it is well established that dopamine neurons often respond to 

surprising, novel or salient sensory stimuli29,31,30,32,23,13,60,61.  We suggest that many observations linking 

dopamine to model-based RL can be accounted for by the combination of these two aspects of 

dopamine activity.  Specifically, we suggest that dopamine responses to new information comprise an 

RPE, which takes into account the best rapidly available value estimates (which may extend beyond 

model-free values, as we describe below), and a scalar-valued surprise signal.  The former can be used 

to update values stored at cortico-striatal synapses, while the latter is permissive for learning state-

state predictions but is not in itself a vector-valued SPE indicating how state predictions should be 

updated.  We will examine each of these ideas in turn. 

Dopaminergic RPEs occur at short latency when new information becomes available, so the value 

information used to compute them must be rapidly available.  There are several mechanisms through 

which internal models could inform value information within the available timeframe: state inference, 

offline planning, predictive representations, and minimal rollouts (Figure 2).   

As current sensory input only partially constrains the current state of the world, brains must infer the 

world’s state by combing recent sensory data with internal models learned over a lifetime.  Elegant 

studies have shown that dopaminergic RPEs reflect inferences about the current state of the 

world14,22,28,62, for example inferring reward probability for one stimulus based on sampling another 

whose reward probability is anticorrelated14.   Inferences about the world’s current state are ‘model-

based’ in the colloquial sense that they depend on internal models.  However they are conceptually 

distinct from ‘model-based RL’ as defined by Sutton and Barto2, which refers more narrowly to 

algorithms which use predictions about future states to compute values63.  As predictions of future 

states do appear to shape dopamine responses15,20, we must consider how model-based RL could 

inform values within the available timeframe. 
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One possibility is that model-based value computations which contribute to dopaminergic RPEs, do 

not occur at the time of the RPE, but rather during prior ‘offline’ planning.   This uses simulated 

experience from a model to refine cached value estimates2, to improve both future decisions and RPEs 

that use the cached values.  Hippocampal sharp wave ripples, which occur during inactivity and sleep, 

are thought to implement offline planning64,65.  During ripples, cell assemblies in hippocampus are 

activated in sequences representing possible behavioural trajectories64,66–68.  VTA activity is modulated 

around ripples, and reward responsive VTA neurons are preferentially recruited when the 

hippocampal sequence represents reward locations69.   This ripple associated dopamine activity may 

update values stored at striatal synapses.   A theoretical model which proposes that offline planning 

is focused on those states that will most improve future choices, explains diverse observations about 

the content of hippocampal ripples65.  Behavioural and brain imaging data also suggest that offline 

planning affects future choices in humans70,71.  Closed loop electrical stimulation of medial-forebrain 

bundle (which recruits dopamine neurons) locked to the spiking of a particular place cell during sleep, 

causes rats to visit the location represented by the place cell on awakening72, demonstrating artificially 

induced offline value updating. 

The other possibility is that online prediction of the states that will follow an event, allows value 

associated with them to shape the dopamine response to it.  While there is behavioural and neural 

data consistent with online planning during decision making73,74, it is unclear whether online planning 

 

Figure 2.  How do internal predictive models contribute to RPE signals?  Diagrams showing different ways in 
which predictive internal models could contribute value information to dopaminergic RPEs.  A) Model-based 
planning uses roll-outs along different possible future trajectories (black) from the current state (red) to 
calculate the long run value associated with different options.  The short latency of dopamine responses likely 
precludes repeated roll-outs using new information from occurring in time to inform the RPE, though offline 
planning during rest or sleep may update cached values that inform future RPEs.  B) The successor 
representation caches a diffuse prediction of likely future states given the current state, which averages over 
previously experienced behavioural trajectories.   This allows for rapid computation of new long run values 
when the immediate rewards associated with states change, but see 38 for some limitations. C)  A minimal 
rollout of only the most probably future trajectory could potentially provide useful value information rapidly 
in near deterministic settings.  D) In addition to predicting the future, internal models may help to 
disambiguate between possible current states that can only be disambiguated by considering the extended 
history.  If the different states have different cached values associated with them, such state inference will 
affect RPEs. 
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could inform the dopaminergic RPE to new information. The challenge is that accurate computation 

of model-based values generally requires repeated roll-outs (i.e. simulated trajectories) along multiple 

branches of the decision tree75, which does not appear plausible in time to shape dopamine responses.  

The successor representation is one possible solution to this problem. It avoids the need for repeated 

roll-outs by caching a single diffuse prediction of the likely future which averages over trajectories 

experienced in the past.  This allows for rapid value computation by multiplying the SR with the 

expected immediate rewards in each state.  Values estimates derived from an SR could therefore 

plausibly contribute to dopaminergic RPEs in the available timeframe.  

More speculatively, it is worth considering the possibility that a minimal roll-out of the most likely 

future trajectory could contribute to the dopamine response.  Though there is little evidence to 

suggest sensory events trigger sharp wave ripples at short latency, the hippocampal theta oscillation 

can be reset by stimuli, particularly when task relevant76–78.  During each theta cycle, hippocampal 

neurons activate sequentially, mapping out a trajectory from the current position to that predicted a 

short time in the future.  At decision points, theta sequences explore different possible future paths, 

suggesting a role in online planning73,79.  Each theta cycle lasts 120-250ms, while the latency from 

onset to peak RPE encoding by dopamine is around 150-400ms80, so theta phase resetting by stimuli 

could in principle allow the hippocampus to roll-out at least one possible future trajectory informed 

by the new information.  Values derived from a single sample trajectory would be inaccurate when 

the future was stochastic, but useful in more deterministic settings, particularly if they incorporated 

an accuracy estimate derived from the predicted trajectories’ probability. 

Surprise, model-learning, and cortical hierarchy 

While there are plausible mechanisms through which model-based value can inform dopaminergic 

RPEs, this does not explain the observation of dopamine responses to surprising but neutral 

events29,31,32,23,61, the necessity of dopamine activity for learning stimulus-stimulus predictions, or that 

stimulating dopamine neurons can unblock such learning21.  Consistent with previous accounts81,82,80, 

we suggest that dopamine neurons carry a surprise or novelty signal in addition to the RPE, which 

indicates that something unexpected has happened, independent of valence.   We propose that this 

surprise signal upregulates new learning about predictive relationships, and is responsible for 

dopamine’s causal role in stimulus-stimulus learning.   

The anatomy and physiology of the dopamine system suggest a particular arrangement of this surprise 

signal with respect to cortical hierarchy.  Unlike other neuromodulatory systems, dopamine 

innervation of cortex is most dense to medial frontal and medial temporal lobe regions positioned 

high in the hierarchy, and comparatively sparse in sensory regions.  However, dopamine responses to 
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sensory surprise or novelty can occur at very short latencies (40 – 100ms), comparable to those in V1 

and earlier than information about stimulus identity is available in higher cortical regions82.  This 

suggests that dopamine neurons carry a surprise signal evaluated low in the sensory hierarchy, close 

to ‘ground truth’ sensory data, but transmit it to regions high in the hierarchy working with highly 

abstracted representations.  

Surprise could promote model updating by increasing learning rates and down weighting prior 

knowledge relative to new information.  Consistent with this, dopamine responses to novel 

conditioned stimuli (CS) promote learning in Pavlovian conditioning, while stimulating dopamine 

projections to prefrontal cortex during presentation of a familiar CS accelerates learning61,83.  

Additionally, dopamine projections to amygdala mediate surprise induced attention to preceding 

cues, which promotes subsequent learning about them84,85.  Upregulation of model learning by 

dopamine can potentially explain the effect of dopamine manipulations on stimulus-stimulus learning 

21,34.   If model updating in frontal regions is upregulated when a prediction failure is signalled by 

dopamine, inhibiting dopamine neurons will impair stimulus-stimulus learning.  Conversely, where 

prior learning of A→X blocks subsequent learning of C→X during presentation of the compound 

AC→X, artificially creating a surprise signal at the time of X presentation may down-weight previously 

learnt predictions, unblocking new learning of C→X.   Unlike the SR account of these data, this does 

not require stimulation to recruit dopamine neurons specific for predictions about X; rather, the 

surprise signal simply indicates that something unexpected has happened, promoting new learning.   

We note that there is substantial overlap between our proposals concerning dopaminergic surprise 

signals upregulating learning, and previous accounts acetylcholine and noradrenaline function86.  

Exploration of differences between these neuromodulators is beyond the scope of this review.  Our 

aim is rather to point out that surprise signalling in dopamine neurons is well established, that 

upregulating learning is a normative response to surprise, and hence may account for recent data 

implicating dopamine in stimulus-stimulus learning.   

Mixed signals and heterogeneity 

Several questions are raised by our account.   Firstly, why mix surprise and RPE signals?  One possibility 

is that though these signals are conceptually very different, the normative responses to each have 

substantial overlap.  Functionally coupling surprise and RPE may drive exploration of undiscovered 

aspects of the environment, exposing new opportunities87,88.  Empirically, surprise or novelty can 

reinforce behaviour, as when rodents press levers to turn on lights89, a behaviour that is dopamine 

dependent90.  Conversely, while any prediction failure suggests that the model should be updated, 

failure to predict reward has particular behavioural relevance.  Coupling RPE and surprise signals may 
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focus the model’s representational capacity on those bits of the state-space that are important for 

behaviour.  A second and not mutually exclusive possibility is that there is sufficient separation of 

these signals in time and/or space to allow downstream regions to demultiplex the two components 

and differentially respond to them91. 

A second challenge for our account is the increasing evidence for heterogeneity of the dopamine 

signal, as both RPE and surprise signals are scalar.  Computing RPE using a vector valued state 

representation requires summing the contribution to value estimates from each state feature (Figure 

1B).   Standard RPE theory assumes that this summation happens prior to the dopamine neurons, so 

they all carry the same signal.  However, given the strong topographical organisation of projections in 

cortico-basal ganglia loops92–94, summation prior to dopamine is likely only partial, such that each 

dopamine neuron combines value information from a subset of state features, generating 

heterogeneous responses95 (Figure 1D).  As individual dopamine neurons innervate large regions of 

striatum, a degree of summation will occur downstream of release via volume transmission, though 

bulk dopamine measurements across different striatal regions indicate that substantial heterogeneity 

remains at this level4,13,96. 

Though some heterogeneity in a conceptually scalar RPE signal may be accounted for by partial 

summation of value over state features, it is hard to reconcile the radically different response profile 

of dopamine neurons projecting to the tail of the striatum, which respond to high intensity sensory 

stimuli but not unexpected reward, and are aversive when stimulated13.  Menegas et al. propose that 

these neurons represent a threat prediction error, forming a separate axis of reinforcement from the 

value prediction errors carried by dopamine projections to ventral striatum (Figure 1E).  Segregating 

learning about rewards and threats makes sense due to the very different behavioural responses they 

require.  It remains an open question whether other aspects of dopamine heterogeneity, such as 

movement responses, can be accounted for by partial summation of value information, or indicate 

the presence of additional axes of reinforcement.  

Conclusions 

We have proposed that dopamine interacts with model-based RL through three mechanisms.  Firstly, 

dopamine neuron activity during offline planning refines cached values stored at striatal synapses, 

affecting both future behaviour and RPEs.  Secondly, dopaminergic RPEs during behaviour incorporate 

model-based value information where this is rapidly available; from earlier offline planning, predictive 

representations such as the SR, and possibly from minimal rollout following stimulus onset.  Thirdly, 

surprise signals carried by dopamine neurons upregulate new learning in predictive models 

instantiated in cortex and hippocampus.  We therefore suggest that, while data implicating dopamine 
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in model-based RL expands the scope of its computational role, and points to a tight integration of 

model-based and model-free RL mechanisms, it remains compatible with RPE theory and does not 

require complete re-evaluation of dopamine’s role in learning and action. 
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